Press n or j to go to the next uncovered block, b, p or k for the previous block.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | import { Injectable, Logger } from '@nestjs/common'; import { InjectModel } from '@nestjs/mongoose'; import { Model } from 'mongoose'; import { User, UserDocument } from '../../../database/schemas/user.schema'; import { UserInteraction, UserInteractionDocument } from '../../../database/schemas/user-interaction.schema'; @Injectable() export class CollaborativeFilteringService { private readonly logger = new Logger(CollaborativeFilteringService.name); constructor( @InjectModel(User.name) private userModel: Model<UserDocument>, @InjectModel(UserInteraction.name) private interactionModel: Model<UserInteractionDocument>, ) {} async getRecommendations(userId: string, options: { limit?: number; categories?: string[]; } = {}): Promise<Array<{ productId: string; score: number }>> { try { // Find similar users based on interaction patterns const similarUsers = await this.findSimilarUsers(userId); // Get products liked by similar users but not by current user const recommendations = await this.getProductsFromSimilarUsers(userId, similarUsers, options); return recommendations.slice(0, options.limit || 20); } catch (error) { this.logger.error(`Error getting collaborative filtering recommendations for user ${userId}`, error); throw error; } } private async findSimilarUsers(userId: string): Promise<string[]> { // Simplified collaborative filtering - find users with similar interaction patterns const userInteractions = await this.interactionModel.find({ userId }).limit(100); Iif (userInteractions.length === 0) return []; const userProductIds = new Set(userInteractions.map(i => i.targetId.toString())); // Find users who interacted with similar products const similarUserInteractions = await this.interactionModel.aggregate([ { $match: { targetId: { $in: Array.from(userProductIds) }, userId: { $ne: userId }, }, }, { $group: { _id: '$userId', commonProducts: { $addToSet: '$targetId' }, interactionCount: { $sum: 1 }, }, }, { $addFields: { similarity: { $divide: [ { $size: '$commonProducts' }, userProductIds.size, ], }, }, }, { $match: { similarity: { $gte: 0.1 } } }, { $sort: { similarity: -1 as any } }, { $limit: 10 }, ]); return similarUserInteractions.map(user => user._id.toString()); } private async getProductsFromSimilarUsers( userId: string, similarUserIds: string[], options: any, ): Promise<Array<{ productId: string; score: number }>> { Iif (similarUserIds.length === 0) return []; // Get user's existing interactions to exclude them const userInteractions = await this.interactionModel.find({ userId }); const userProductIds = new Set(userInteractions.map(i => i.targetId.toString())); // Get products liked by similar users const recommendations = await this.interactionModel.aggregate([ { $match: { userId: { $in: similarUserIds }, targetId: { $nin: Array.from(userProductIds) }, actionType: { $in: ['purchase', 'wishlist', 'click'] }, }, }, { $group: { _id: '$targetId', score: { $sum: 1 }, users: { $addToSet: '$userId' }, }, }, { $sort: { score: -1 as any } }, { $limit: options.limit || 20 }, ]); return recommendations.map(rec => ({ productId: rec._id.toString(), score: rec.score / similarUserIds.length, // Normalize by number of similar users })); } } |